Jul 05, 2025  
2019-2020 Undergraduate Catalog 
    
2019-2020 Undergraduate Catalog [ARCHIVED CATALOG]

CS 438 - Applied Machine Learning


3 Credit(s) | Lecture |
Course can be counted for credit once

Description:
This course presents the practical side of machine learning for applications, such as pattern recognition from images or building predictive classifiers. Topics will include linear models for regression, decision trees, rule based classification, support vector machines, Bayesian networks, and clustering. The emphasis of the course will be on the hands-on application of machine learning to a variety of problems. This course does not assume any prior exposure to machine learning theory or practice.

Enrollment Requirements:
Prerequisite: CS 310 

039054:1